Les maillons de la chaine numérique

Concept général

Deuxième partie

Contenu du dossier 02 :

⇒ Tutoriels B. : Conception des éléments de la carrosserie du « Buggy »

Conception de la coque avec SolidWorks

Tutoriel B1

Volume renfermant la coque : $190 \times 90 \times 60$ mm

Comment dessiner la forme de la coque rapidement à partir d'une image numérisée de la maquette ?

<u>Rappel</u> : Le croquis fait partie de la préparation de l'ébauche d'une idée, avant d'entamer un travail plus précis comme la conception 3D avec « SolidWorks ». Il capte l'essentiel du produit à développer, la forme générale, un sens du volume si celui-ci est réalisé en perspective.

La maquette en carton sert de modèle lors de la modélisation des composants 3D avec SolidWorks. Grâce à un scanner photo mis à disposition, l'élève crée une image numérique de l'une des faces de la maquette en carton qui lui servira de modèle dans Solidworks.

<u>Méthode</u> :

Maguette en carton

Pour créer une image de la coque qui servira de modèle dans SolidWorks, vous avez la possibilité d'utiliser le logiciel livré avec le scanner ou « PhotoFiltre »

Scanner photo + logiciel

Avant de se lancer dans la conception de pièces, il est nécessaire de s'entrainer avec le modeleur « SolidWorks », à l'aide d'une série d'exercices didactiques.

Conception de la coque avec SolidWorks à partir d'une image

Créer une image d'esquisse

Image numérique enregistrée au format JPEG

Maquette en carton

Scanner + PhotoFiltre

Lancer Solidworks et créer un nouveau document « Pièce »

Tracer une zone de construction (trait mixte)

Sélectionner et ajuster l'image de la coque à la zone de construction

A partir du menu « Outils » sélectionner « Outils d'esquisse » puis « Image d'esquisse »

Ajuster l'image d'esquisse à la zone de construction (trait mixte) et la transparence

Image JPEG de la coque

Tracer le profil extérieur de la coque

Créer une nouvelle esquisse puis représenter l'axe de symétrie de l'ouverture de la porte et le positionnement des roues de diamètres différents.

Pour commencer, tracer le profil extérieur de la coque.

Finaliser le traçage extérieur de la coque et fermer le profil.

Tracer l'ouverture intérieure de la porte

Tracer les différents profils...

Décaler les entités de 3 mm vers le haut.

Fermer les différents profils.

Tracer les trous de perçage de diamètre 3,40 mm

Créer une fonction volumique

Créer des faces arrondies dans une fonction volumique

- Rayon 1 mm
- (= au rayon de l'outil de découpe)

Tracer les trous de perçage sur une face

Enlever de la matière dans le modèle volumique

Profondeur 10 mm

Auteur : M Foubard

Convertir le volume en pièce de tôlerie en sélectionnant deux plis

(L)

Convertir en tôlerie

Paramètres de tôlerie :

- Epaisseur de la tôle 1 mm
- Rayon pour les plis 2 mm

Sélectionner 2 plis

Editer le matériau et la couleur de celui-ci

Montrer l'état déplié de la pièce

Convertir au format « Autocad » l'état déplié de la pièce

 Enregistrer la coque au format DXF (Tutoriel n°2-Niv4)

Enregistrer l'état plié de votre travail

Transférer le fichier « Autocad » dans le logiciel « Gcao »

Tutoriel n°3 - Niv4

Définir le processus d'usinage avec le logiciel « Gfao »

Tutoriel n°3 - Niv4

Transférer et simuler le programme d'usinage avec le logiciel « Gpilote »

Tutoriel n°3 - Niv4

Usiner la coque avec la commande numérique du collège

Positionner le brut sur le plateau « Martyr »

Auteur : M Foubard

Conception du support énergie de stockage avec le modeleur "SolidWorks"

Tutoriel B2

Auteur : M Foubard

Croquis du support énergie de stockage

<u>Rappel</u> : Le croquis fait partie de la préparation de l'ébauche d'une idée, avant d'entamer un travail plus précis comme la conception 3D avec « SolidWorks ». Il capte l'essentiel du produit à développer, la forme générale, un sens du volume si celui-ci est réalisé en perspective.

Support E,S' 12 12 12 12 60 60 60-2=58 PVC rigide épaineur Journe

Avant de se lancer dans la conception de pièces, il est nécessaire de s'entrainer avec le modeleur « SolidWorks », à l'aide d'une série d'exercices didactiques.

Volume renfermant le support ES : 60 x 58 x 12 mm

Comment dessiner le support énergie de stockage à partir du croquis ?

Créer un document « Pièce »

Tracer le profil du support énergie de stockage

Créer une fonction volumique

Profondeur 58 mm

Convertir le volume en pièce de tôlerie en sélectionnant deux plis

Paramètres de tôlerie :

- Epaisseur de la tôle 1 mm
- Rayon pour les plis 2 mm
- -
- Sélectionner 2 plis

Editer le matériau et la couleur de celui-ci

Montrer l'état déplié de la pièce

Convertir au format « Autocad » l'état déplié de la pièce

 Enregistrer le support ES au format DXF (Tutoriel n°2-Niv4)

Enregistrer l'état plié de votre travail

Transférer le fichier « Autocad » dans le logiciel « Gcao »

Tutoriel n°3 - Niv4

Définir le processus d'usinage avec le logiciel « Gfao »

Tutoriel n°3 - Niv4

Transférer et simuler le programme d'usinage avec le logiciel « Gpilote »

Tutoriel n°3 - Niv4

Usiner le support ES avec la commande numérique du collège

Positionner le brut sur le plateau « Martyr »

Conception du support moteur avec le modeleur "SolidWorks"

Tutoriel B3

Croquis du support moteur

<u>Rappel</u> : Le croquis fait partie de la préparation de l'ébauche d'une idée, avant d'entamer un travail plus précis comme la conception 3D avec « SolidWorks ». Il capte l'essentiel du produit à développer, la forme générale, un sens du volume si celui-ci est réalisé en perspective.

Volume renfermant le support moteur : 58 × 25 × 12 mm

Avant de se lancer dans la conception de pièces, il est nécessaire de s'entrainer avec le modeleur « SolidWorks », à l'aide d'une série d'exercices didactiques.

Comment dessiner le support moteur à partir du croquis ?

Créer un document « Pièce »

Tracer le profil du support moteur

Créer une fonction volumique

Profondeur 58 mm

Tracer les profils de découpe par symétrie et le trou de perçage

Enlever de la matière dans le modèle volumique

Créer des faces arrondies dans une fonction volumique

Rayon 5 mm

Convertir le volume en pièce de tôlerie en sélectionnant deux plis

Paramètres de tôlerie :

- Epaisseur de la tôle 1 mm
- Rayon pour les plis 2 mm
- Sélectionner 2 plis

Editer le matériau et la couleur de celui-ci

Montrer l'état déplié de la pièce

Convertir au format « Autocad » l'état déplié de la pièce

• Enregistrer le support moteur au format DXF (Tutoriel n°2-Niv4)

Enregistrer l'état plié de votre travail

Transférer le fichier « Autocad » dans le logiciel « Gcao »

Tutoriel n°3 - Niv4

Définir le processus d'usinage avec le logiciel « Gfao »

Tutoriel n°3 - Niv4

Transférer et simuler le programme d'usinage avec le logiciel « Gpilote »

Tutoriel n°3 - Niv4

Usiner le support moteur avec la commande numérique du collège

Positionner le brut sur le plateau « Martyr »

Conception du tableau de bord avec le modeleur "SolidWorks"

Auteur : M Foubard

Croquis du tableau de bord

<u>Rappel</u> : Le croquis fait partie de la préparation de l'ébauche d'une idée, avant d'entamer un travail plus précis comme la conception 3D avec « SolidWorks ». Il capte l'essentiel du produit à développer, la forme générale, un sens du volume si celui-ci est réalisé en perspective.

Volume renfermant le tableau de bord : 40 x 35 x 22 mm

Avant de se lancer dans la conception de pièces, il est nécessaire de s'entrainer avec le modeleur « SolidWorks », à l'aide d'une série d'exercices didactiques.

Comment dessiner le tableau de bord à partir du croquis ?

Créer un document « Pièce »

100 C :e1 (Défaut<<Défaut>_Eta Matériau < no Plan de face Plan de dessu Plan de dessus Plan de droite Origine İ. Modèle Etude de mouvement 1

Tracer le profil du tableau de bord

Créer une fonction volumique

Profondeur 35 mm

Tracer le profil de découpe

Auteur : M Foubard

Enlever de la matière dans le modèle volumique

Convertir le volume en pièce de tôlerie en sélectionnant un pli

Paramètres de tôlerie :

- Epaisseur de la tôle 1 mm
- Rayon pour le pli 2 mm
- Sélectionner 1 pli

Tracer les trous de perçage sur une face

Enlever de la matière dans le modèle volumique

Profondeur 10 mm

Auteur : M Foubard

Montrer l'état déplié de la pièce

Convertir au format « Autocad » l'état déplié de la pièce

 Enregistrer le tableau de bord au format DXF (Tutoriel n°2-Niv4)

Enregistrer l'état plié de votre travail

Transférer le fichier « Autocad » dans le logiciel « Gcao »

Tutoriel n°3 - Niv4

Définir le processus d'usinage avec le logiciel « Gfao »

Tutoriel n°3 - Niv4

Transférer et simuler le programme d'usinage avec le logiciel « Gpilote »

Tutoriel n°3 - Niv4

Usiner le tableau de bord avec la commande numérique du collège

Positionner le brut sur le plateau « Martyr »

Conception de la calandre avec SolidWorks

Tutoriel B5

Croquis de la calandre

<u>**Rappel</u></u> : Le croquis fait partie de la préparation de l'ébauche d'une idée, avant d'entamer un travail plus précis comme la conception 3D avec « SolidWorks ». Il capte l'essentiel du produit à développer, la forme générale, un sens du volume si celui-ci est réalisé en perspective.</u>**

Volume renfermant la calandre : $58 \times 40 \times 30$ mm

Avant de se lancer dans la conception de pièces, il est nécessaire de s'entrainer avec le modeleur « SolidWorks », à l'aide d'une série d'exercices didactiques. Créer un document « Pièce »

Créer une fonction volumique

Profondeur 40 mm

Tracer le profil de découpe

A

Enlever de la matière dans le modèle volumique

Convertir le volume en pièce de tôlerie en sélectionnant un pli

Paramètres de tôlerie :

• Epaisseur de la tôle 1 mm

Rayon pour le pli 2 mm

Sélectionner 1 pli

Editer le matériau et la couleur de celui-ci

Montrer l'état déplié de la pièce

Convertir au format « Autocad » l'état déplié de la pièce

 Enregistrer la calandre au format DXF (Tutoriel n°2-Niv4)

Enregistrer l'état plié de votre travail

Transférer le fichier « Autocad » dans le logiciel « Gcao »

Tutoriel n°3 - Niv4

Définir le processus d'usinage avec le logiciel « Gfao »

Tutoriel n°3 - Niv4

Transférer et simuler le programme d'usinage avec le logiciel « Gpilote »

Tutoriel n°3 - Niv4

Usiner la calandre avec la commande numérique du collège

Positionner le brut sur le plateau « Martyr »

Auteur : M Foubard

Conception du siège avec le modeleur "SolidWorks"

Tutoriel B6

Croquis du siège

<u>Rappel</u> : Le croquis fait partie de la préparation de l'ébauche d'une idée, avant d'entamer un travail plus précis comme la conception 3D avec « SolidWorks ». Il capte l'essentiel du produit à développer, la forme générale, un sens du volume si celui-ci est réalisé en perspective.

Volume renfermant le siège : 72 × 58 × 40 mm

Avant de se lancer dans la conception de pièces, il est nécessaire de s'entrainer avec le modeleur « SolidWorks », à l'aide d'une série d'exercices didactiques. Créer un document « Pièce »

Tracer le profil du siège

Créer une pièce de tôlerie

Paramètres de tôlerie :

- Epaisseur de la tôle 1 mm
- Rayon de pliage 2 mm
- Profondeur 40 mm

Tracer le profil par symétrie

Enlever de la matière dans le modèle volumique

Tracer le profil par symétrie

Enlever de la matière dans le modèle volumique

Créer des faces arrondies dans une fonction volumique

Rayon 5 mm

Montrer l'état déplié de la pièce

Convertir au format « Autocad » l'état déplié de la pièce

 Enregistrer le siège au format DXF (Tutoriel n°2-Niv4)

Enregistrer l'état plié de votre travail

Transférer le fichier « Autocad » dans le logiciel « Gcao »

Tutoriel n°3 - Niv4

Définir le processus d'usinage avec le logiciel « Gfao »

Tutoriel n°3 - Niv4

Transférer et simuler le programme d'usinage avec le logiciel « Gpilote »

Tutoriel n°3 - Niv4

Usiner le siège avec la commande numérique du collège

Positionner le brut sur le plateau « Martyr »